Часть 2.
х1х2х3х4
х5х6х7х8
(х1х8)(х2х8)(х3х8)(х4х8)
(х1х7)(х2х7)(х3х7)(х4х7)
(х1х6)(х2х6)(х3х6)(х4х6)
(х1х5)(х2х5)(х3х5)(х4х5)
х3х8 | Х4х7 | Y7 | Р1 |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 |
Y7=(а+b)+(a+b); a=x3x8; b=x4x7 P1=ab
a | b | c | P1 | P2 | Y6 | P2 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 1 |
После упрощения Y6=(cp1+cp1)(ab+ab)+(cp1+cp1)(ab+ab)
P2=a(bp1+bp1)+p1(bc+bc)+abc a=x2x8;b=x3x7;c=x4x6
P2=abcp1
a | b | c | d | P2 | P3 | Y5 | P3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
После упрощения:
Y5=(dp2+dp2)(a(bc+bc)+a(bc+bc))+(dp2+dp2)c(ab+ab)
P3=bd(ac+ac)+cp2(ac+ab)+ab(cp2+cp2)+dp2(ab+ab)+abcp2
P3=bd(ac+ac)+cp2(ad+ad)+(ab+ab)(dp2+cp2)+abcp2 a=x1x8;b=x2x7;c=x3x6;d=x4x5
A | b | c | P2 | P3 | P4 | Y4 | P4 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
После упрощения:
Y4=(p2p3+p2p3)(abc+abc+abc)+ap2p3(bc+bc)+abcp2+abcp2p3
P4=(p2+p3)b(ac+ac)+abc(p2+p3)+abp(p2+c)+abc(p2+p3)+abcp2p3
P4=p2p3(bc+ac+ab)+abc(p2+p3) a=x1x7;b=x2x6;c=x3x5
A | b | P3 | P4 | P5 | Y3 |
0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 |
После упрощения:
Y3=(ab+ab)(p3p4+p3p4)+(ab+ab)(p3p4+p3p4)
P5=p4b(a+p3)+b(ap3+p3p4+ap4)
a=x1x6;b=x2x5
A | P4 | P5 | P6 | Y2 |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
После упрощений:
Y2=p4(ap5+ap5)+p4(ap5+ap5)
P6= p4p5+a(p4+p5) a=x1x5
Y1=P6= p4p5+a(p4+p5)
Y8=x4x8
Часть 1.
Р
Ти
Условия: 1. (t+1)=2t+P(t)
2. Пусть схема Р будет вырабатывать еденицу только в нулевом, еденичном состоянии и в состоянии «6».
3. Начальное состояние примем 11
Число | Х1 | Х2 | Х3 | Х4 | Х5 |
11 | 0 | 1 | 0 | 1 | 1 |
22 | 1 | 0 | 1 | 1 | 0 |
12 | 0 | 1 | 1 | 0 | 0 |
24 | 1 | 1 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 1 | 1 |
6 | 0 | 0 | 1 | 1 | 0 |
13 | 0 | 0 | 1 | 1 | 0 |
26 | 0 | 1 | 1 | 0 | 1 |
20 | 1 | 1 | 0 | 1 | 0 |
8 | 0 | 1 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 |
Выберем последовательность чисел: 1 3 6 13 26 20 8 16
У=х1х2х3х4х5+х1х2х3х4х5+х1х2х3х4х5=х1х3х4х5(х2+х2)+х1х2х3х4х5=
=(х1+х3+х4+х5)+(х1+х2+х3+х4+х5)